http://www.bustle.com/articles/9681-sherlock-season-3-doctor-who-return-details-have-been-revealed-start-freaking-out

As for Sherlock — luckily, no one is switching out roles on that series, but it does seem like we’ll be in for another painfully short season. Though the specific return date for BBC hasn’t been announced yet, Deadline does confirm that Sherlock will return to the network for UK viewers at some point during the holidays, and on Jan. 19th for US viewers watching on PBS. There will be a total of only three episodes. Damn British TV and their proclivity for painfully short seasons!


'kcy1019 > Else' 카테고리의 다른 글

How to use 'a comment' instead of '1 comments' in tistory.  (1) 2013.08.12
'real' usage of vi  (1) 2013.08.11
node.js  (0) 2013.07.27
MIKA - Popular Song ft. Ariana Grande  (0) 2013.07.19
There , and

The diophantine equation ax+by=c has solutions if and only if gcd(a,b)|c. If so, it has infinitely many solutions, and any one solution can be used to generate all the other ones.

To see this, note that the greatest common divisor of a and b divides both ax and by, hence divides c if there is a solution. This gives the necessity of the condition (which you have backwards). (fixed in edits)

The converse is actually a constructive proof, that you can find in pretty much every elementary number theory course or book, and which is essentially the same as yunone's answer above (but without dividing through first).

From the Extended Euclidean Algorithm, given any integers a and b you can find integers s and tsuch that as+bt=gcd(a,b); the numbers s and t are not unique, but you only need one pair. Once you find s and t, since we are assuming that gcd(a,b) divides c, there exists an integer k such that gcd(a,b)k=c. Multiplying as+bt=gcd(a,b) through by k you get

a(sk)+b(tk)=gcd(a,b)k=c.

So this gives one solution, with x=sk and y=tk.

Now suppose that ax1+by1=c is a solution, and ax+by=c is some other solution. Taking the difference between the two, we get

a(x1x)+b(y1y)=0.

Therefore, a(x1x)=b(yy1). That means that a divides b(yy1), and therefore agcd(a,b)divides yy1. Therefore, y=y1+ragcd(a,b) for some integer r. Substituting into the equation a(x1x)=b(yy1) gives

a(x1x)=rb(agcd(a,b))

which yields

gcd(a,b)a(x1x)=rba

or x=x1rbgcd(a,b).

Thus, if ax1+by1=c is any solution, then all solutions are of the form

x=x1rbgcd(a,b),y=y1+ragcd(a,b)

exactly as yunone said.


To give you an example of this in action, suppose we want to find all integer solutions to

258x+147y=369.

First, we use the Euclidean Algorithm to find gcd(147,258); the parenthetical equation on the far right is how we will use this equality after we are done with the computation.

25814711136=147(1)+111=111(1)+36=36(3)+3=3(12).(equivalently, 111=258147)(equivalently, 36=147111)(equivalently, 3=1113(36))

So gcd(147,258)=3. Since 3|369, the equation has integral solutions.

Then we find a way of writing 3 as a linear combination of 147 and 258, using the Euclidean algorithm computation above, and the equalities on the far right. We have:

3=1113(36)=1113(147111)=4(111)3(147)=4(258147)3(147)=4(258)7(147).

Then, we take 258(4)+147(7)=3, and multiply through by 123; why 123? Because 3×123=369. We get:

258(492)+147(861)=369.

So one solution is x=492 and y=861. All other solutions will have the form

xy=492147r3=49249r,=861+258r3=86r861,rZ.

You can reduce those constants by making a simple change of variable. For example, if we let r=t+10, then

xy=49249(t+10)=249t,=86(t+10)861=86t1,tZ.


'kcy1019 > CS' 카테고리의 다른 글

Non-Deterministic Primality Test.  (1) 2013.07.21
There , and

Actually, this function is defualt(provided by tistory/tattertools).

All of tistory skins have 'index.xml' file(even though it is not visible in upload page, you can upload it).

In the xml, there're nodes named 'none' and 'single'.

If they're set, they're appeared instead of 'skin.html' setting when there're no comments or a comment.

index.xml

*Caution : you must save and apply the skin(save to repository, and apply in the repository)

               to activate modified index.xml.

'kcy1019 > Else' 카테고리의 다른 글

Sherlock retrurn details  (0) 2013.12.18
'real' usage of vi  (1) 2013.08.11
node.js  (0) 2013.07.27
MIKA - Popular Song ft. Ariana Grande  (0) 2013.07.19
There , and